Uniformly accelerated oscillator in 2+1 dimensions: temperature-dependent frequency shift

Dimitris Moustos (dmoustos@upatras.gr)

Department of Physics, University of Patras, Greece

1. The Unruh effect

Observers moving with constant acceleration of magnitude α in Minkowski spacetime perceive the Minkowski vacuum state as a thermal state at a temperature proportional to their acceleration, known as the Unruh temperature

$$T_U = \frac{\alpha}{2\pi}$$

Accelerated observers through the Minkowski vacuum respond in exactly the same way as inertial observers immersed in a thermal reservoir at the Unruh temperature. This equivalence ceases to hold when the dimensions of the background spacetime are odd [1]. We ask:

2. Setup

We consider a massless scalar quantum field on a background (n+1)-dimensional Minkowski spacetime

$$\hat{\Phi}(t,\mathbf{x}) = \int \frac{d^{n}\mathbf{k}}{\sqrt{2(2\pi)^{n}|\mathbf{k}|}} \left(\hat{a}_{\mathbf{k}}e^{-i(|\mathbf{k}|t-\mathbf{k}\cdot\mathbf{x})} + \text{H.c.}\right),$$

We consider an oscillator detector of unit mass and bare frequency Ω , whose position operator \hat{x} is linearly coupled to the field through the interaction Hamiltonian [2]

$$H_{\text{int}} = \lambda \hat{x} \otimes \hat{\Phi}(\mathbf{x}(\tau)),$$

where λ is the coupling constant and $\hat{\Phi}(\mathbf{x}(\tau))$ is the pullback of the field to the detector's worldline $\mathbf{x}(\tau) = (t(\tau), \mathbf{x}(\tau))$ parametrized by its proper time τ .

What this non-equivalence in odd spacetime dimensions implies for the dynamics of an accelerated Brownian particle?

3. Noise and dissipation kernels

The Wightman two-point correlation function of the field evaluated along a detector's trajectory can be written as

 $\mathcal{W}(\tau,\tau') = \langle \hat{\varphi}(\tau) \hat{\varphi}(\tau') \rangle \\ \equiv \nu(\tau,\tau') - i\eta(\tau,\tau'),$

where $\hat{\varphi}(\tau) := \lambda \hat{\Phi}(\mathbf{x}(\tau))$, and we have introduced the so-called noise kernel

$$u(au, au') := rac{1}{2} \langle \{\hat{arphi}(au), \hat{arphi}(au')\}
angle$$

and *dissipation kernel*

$$\eta(\tau,\tau'):=\frac{i}{2}\left\langle \left[\hat{\varphi}(\tau),\hat{\varphi}(\tau')\right]\right\rangle.$$

A uniformly accelerated detector follows the hyperbolic trajectory

 $\mathbf{x}(\tau) = (\alpha^{-1}\sinh(\alpha\tau), \alpha^{-1}\cosh(\alpha\tau), \mathbf{x}_{\perp}),$

where x_{\perp} denotes the spatial coordinate transverse to the direction of the acceleration.

4. The master equation

The reduced dynamics of the oscillator detector is descibed by the master equation

$$egin{aligned} &rac{d}{d au}\hat
ho(au) = -i\left[rac{\hat p^2}{2} + rac{1}{2}(\Omega^2 + \delta\Omega)\hat x^2, \hat
ho(au)
ight] - i\gamma[\hat x, \{\hat p, \hat
ho(au)\}] \ &- D[\hat x, [\hat x, \hat
ho(au)]] - f[\hat x, [\hat p, \hat
ho(au)]], \end{aligned}$$

where the coefficient

$$\gamma \equiv rac{1}{\Omega} \int_0^\infty d au \, \eta(au) \sin(\Omega au)$$

is the dissipation rate and

$$\delta\Omega\equiv-2\int_0^\infty d au\,\eta(au)\cos(\Omega au)$$

is a shift to oscillator's frequency.

5. Two-point correlation functions

Spacetime

Oscillator detector

Wightman function

dimensions	Uscinator detector	vigniman function
2+1	inertial in thermal field bath	$\mathcal{W}_{th}(t) = rac{\lambda^2}{4\pi} \int_0^\infty d\omega \left(\operatorname{coth} \left(rac{\omega}{2T} ight) \operatorname{cos}(\omega t) - i \operatorname{sin}(\omega t) ight)$
	accelerated in vacuum	$\mathcal{W}_{\sf acc}(t) = rac{\lambda^2}{4\pi} \int_0^\infty d\omega \left(\cos(\omega t) - i \tanh\left(rac{\omega}{2T_U} ight) \sin(\omega t) ight)$
3+1	inertial in thermal field bath	$\mathcal{W}_{th}(t) = rac{\lambda^2}{4\pi^2} \int_0^\infty d\omega \omega \left(\coth\left(rac{\omega}{2T} ight) \cos(\omega t) - i \sin(\omega t) ight)$
	accelerated in vacuum	$\mathcal{W}_{\sf acc}(t) = rac{\lambda^2}{4\pi^2} \int_0^\infty d\omega \omega \left(\coth\left(rac{\omega}{2T_U} ight) \cos(\omega t) - i \sin(\omega t) ight)$

6. Dissipation and frequency shift

We find that both the accelerated detector's dissipation rate

$$\gamma = \gamma_0 \tanh\left(rac{\Omega}{2T_U}
ight),$$

where $\gamma_0 = \frac{\lambda^2}{8\Omega}$ denotes the damping constant obtained in the case of inertial motion in field bath at a thermal state, and the shift of its frequency caused by the cou-

pling to the field

$$\delta\Omega = \frac{4\gamma_0\Omega}{\pi} \left[\ln\left(\frac{2\pi T_U}{\Omega}\right) + \operatorname{Re}\psi\left(\frac{i\Omega}{2\pi T_U} + \frac{1}{2}\right) \right]$$

depend on the acceleration temperature ; $\psi(z)$ is the digamma function.

This is in contrast to the (3+1)-dimensional case, where dissipation and frequency shift do not exhibit temperature dependencies.

(a) Dissipation rate

(b) Frequency shift

Figure 1: Dissipation rate and frequency shift of a uniformly accelerated oscillator detector (solid line) in the (2+1)-dimensional space compared to the ones found in the case of an inertial detector immersed in a heat bath at the Unruh temperature T_U (dashed line).

7. Question

Can we explore the emergence of the unique characteristics of the Unruh (or any Unruh-like) effect in the (2+1) dimensional spacetime geometry in analogue experiments?

References

[1] S. Takagi, "Vacuum Noise and Stress Induced by Uniform Acceleration", Progress of Theoretical Physics Supplement 88, 1 (1986).

[2] B. L. Hu, S.-Y. Lin, and J. Louko, "Relativistic quantum information in detectors-field interactions", Class. Quantum Grav. 29, 224005 (2012).

[3] D. Moustos, "Uniformly accelerated Brownian oscillator in (2+1)D: temperature-dependent dissipation and frequency shift," Physics Letters B 829, 137115 (2022) ; arXiv:2201.08287 [gr-qc]

