Coherent States and the Bargmann Representation in Relativistic Quantum Mechanics

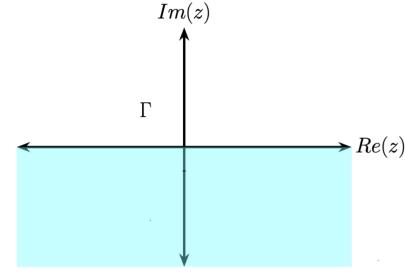
Rishindra Melanathuru¹, D. C. Brody², L. P. Hughston³ and G. W. Gibbons⁴

¹vrm18@ic.ac.uk, ²D.Brody@surrey.ac.uk, ³L.Hughston@gold.ac.uk, ⁴G.W.Gibbons@damtp.cam.ac.uk

Introduction

The phase space of a relativistic system can be identified with the future tube of complexified Minkowski space. A Hilbert space of square-integrable holomorphic functions can be constructed on the relativistic phase space, upon which a quantum measurement theory of spacetime phase-space events can be formulated. This Hilbert space of holomorphic functions can alternatively be interpreted as the Husimi (Fushimi) representation of relativistic quantum theory. A transformation analogous to that of Bargmann can then be worked out, leading to a new formulation of relativistic quantum theory in which the coherent states associated with the conformal group play an important role.

Phase space in relativistic mechanics



The phase space of a relativistic system is identified with the future tube Γ of complexified Minkowski space \mathbb{CM} , which is a submanifold of $\mathbb{C}\mathbb{M}$ described by points of the form $z^a = x^a - ir^a$ where r^a is timelike and future pointing. The Kelvin transform [1] relates r^a to the momentum p^a by

Figure 1: Future tube in one timelike dimension.

$$r^{a} = \frac{\hbar p^{a}}{p_{c}p^{c}}, \quad p^{a} = \frac{\hbar r^{a}}{r^{c}r_{c}}.$$
(1)

Phase-space localization

On phase space, no wave function can be sharply peaked. In particular, the maximum value that a squared wave function can take is given by

$$\max_{z\in\Gamma}\rho(z,\bar{z}) = \frac{3}{4\pi^4\lambda_z^8},\tag{8}$$

where λ_z is the reduced Compton wavelength associated to the phase-space point z at which the maximum occurs.

Conformal transformations

The action of a Poincaré transformation on $z \in \Gamma$ is given by

This induces a positive definite metric and its inverse

$$g_{ab} = -\frac{1}{r_c r^c} \left(\eta_{ab} - \frac{2 r_a r_b}{r_c r^c} \right), \quad k^{ab} = -r_c r^c \left(\eta^{ab} - \frac{2 r^a r^b}{r_c r^c} \right)$$
(2)

on Γ , where $\eta_{\mu\nu} = \text{diag}(1, -1, -1, -1)$, and Hamilton's equations are

$$\frac{dx^{a}}{ds} = -g^{ab}\frac{\partial H}{\partial r^{b}}, \qquad \frac{dr^{a}}{ds} = k^{ab}\frac{\partial H}{\partial x^{b}}.$$
(3)

Relativistic quantum mechanics

The space $\mathcal{H} = \mathcal{L}^2(\Gamma, O)$ of square integrable holomorphic functions on the future tube can be viewed as the Hilbert space of quantum states on the phase space [1]. A general quantum state with density matrix $\rho(z, \bar{w})$ is defined to have the following properties:

1. $\rho(z, \bar{w})$ is Hermitian, i.e. $\rho(z, \bar{w}) = \bar{\rho}(\bar{w}, z)$.

2. $\rho(z, \bar{w})$ is positive, that is

$$\iint \bar{\Psi}(\bar{z})\rho(z,\bar{w})\Psi(w) \, d\mu_z \, d\mu_w \ge 0, \tag{4}$$

for any $\Psi(z) \in \mathcal{H}$, where $d\mu_z$ is Leb(Γ). The integrals each range over Γ .

3. $\rho(z, \bar{w})$ has unit trace, that is

$$\iint K(z,\bar{w})\rho(w,\bar{z}) d\mu_w d\mu_z = \int \rho(z,\bar{z}) d\mu_z = 1, \qquad (5)$$

where $K(z, \bar{w})$ is the reproducing kernel (Bergman kernel) on \mathcal{H} [2]. A pure state is a density matrix of the form $\rho(z, \bar{w}) = \Psi(z)\bar{\Psi}(\bar{w})$.

 $z^a \to \Lambda^a_b z^b + B^a$, (9)

where Λ_{h}^{a} gives a Lorentz transform and B^{a} denotes a real four vector. The unitary representation of the Poincaré group acting on \mathcal{H} is given by

$$U(z,\bar{w}) = K(\Lambda_b^a z^b + B^a, \bar{w}^a), \qquad (10)$$

where *K* is the Bergman kernel. More generally, the Bergman kernel can be used to describe the full 15-parameter conformal group over \mathcal{H} of which the Poincaré group is a proper subgroup [1].

Coherent states

The coherent state centred at $w \in \Gamma$, more specifically, is

$$\Psi_w(z) = \frac{8\sqrt{3}}{\pi^2} \frac{[\eta_{ab}(w^a - \bar{w}^a)(w^b - \bar{w}^b)]^2}{[\eta_{ab}(z^a - \bar{w}^a)(z^b - \bar{w}^b)]^4}.$$
(11)

The action of the conformal group on \mathcal{H} leaves the space of coherent states invariant.

Husimi representation

We can identify \mathcal{H} as a Husimi representation of relativistic quantum mechanics; that is to say, the elements of \mathcal{H} are the Bargmann transforms [3] of the elements of $\mathcal{L}^2(V^+)$, where V^+ is a forward light cone. We construct a Bargmann transform between \mathcal{H} and $\mathcal{L}^2(V^+)$. Using the inverse Bargmann transform $A(q, \bar{z})$ we can show that the associated coherent state $\psi_w(q) \in \mathcal{L}^2(V^+)$ is given by

$$\psi_w(q) = \int A(q,\bar{z}) \,\Psi_w(z) \,d\mu_z = \frac{1}{\pi \sqrt{2^6 4!}} \left(\frac{(w-\bar{w})^2}{w^2 \,\bar{w}^2}\right)^2 \exp\left(-\frac{\mathrm{i}q_a \bar{w}^a}{\bar{w}_b \bar{w}^b}\right). \tag{12}$$

Quantum measurement

To make sense of quantum detection we define a positive operator valued measure (POVM) on Γ by setting

$$\phi_A(z,\bar{w}) = \int_{u \in A} K(z,\bar{u}) K(u,\bar{w}) \, d\mu_u, \tag{6}$$

where A is any element of the Borel σ -algebra on Γ . The probability that an event lies in this set is given by

$$\operatorname{Prob}(A) = \iint_{\Gamma} \phi_A(z, \bar{w}) \rho(w, \bar{z}) \, d\mu_w \, d\mu_z = \int_{z \in A} \rho(z, \bar{z}) \, d\mu_z. \tag{7}$$

If the measurement outcome is the phase-space point w, then the output state is the coherent state $\Psi_w(z) = [K(w, \bar{w})]^{-1/2} K(z, \bar{w}).$

Thus, a coherent state associated to the conformal group on V^+ is a plane wave that is exponentially damped into the future orientation.

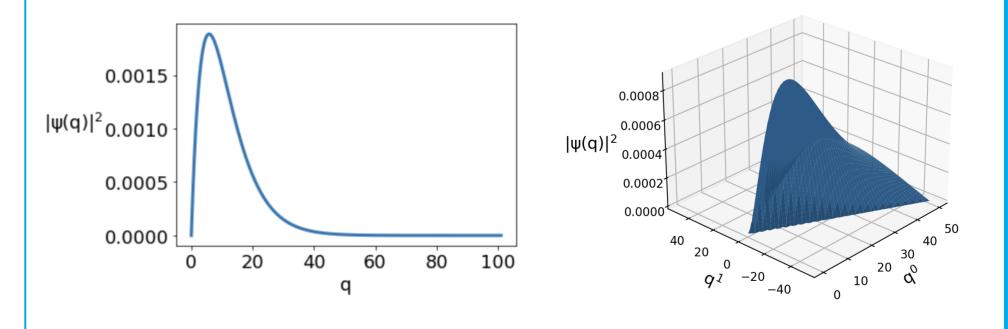


Figure 2: Probability densities of coherent states in 0 + 1 and 1 + 1 dimensions.

References

[1] D. C. Brody & L. P. Hughston (2021) Quantum measurement of space-time events, J. Phys. A: Math. Theor. 54, 235304. [2] S. Bergman (1970) The Kernel Function and Conformal Mapping. Providence, Rhode Island: American Mathematical Society. [3] V. Bargmann (1961) On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure and Applied Math 14, 187-214.