Cohering and decohering power of massive scalar fields under instantaneous interactions (Phys. Rev. A 107, 022420) $\begin{bmatrix} R, 0 \\ R, 0 \end{bmatrix} F$

Nikolaos K. Kollas¹, Dimitris Moustos¹ and Miguel R. Muñoz²

 ¹ Laboratory on Relativistic Quantum Information and Foundations, Division of Theoretical and Mathematical Physics, Astronomy and Astrophysics, Department of Physics, University of Patras, 26504, Patras, Greece
² Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, United Kingdom

Abstract

We employ a non-perturbative technique to investigate the ability of a quantum field to create or destroy coherence in a two level Unruh-DeWitt (UDW) detector. We observe that, above a critical value of the effective coupling constant, the maximum amount of coherence generated by a coherent field displays re-

2. Instantaneous interactions of UDW detectors with scalar fields

University of Patras

The interaction Hamiltonian is given by

 $\hat{H}_{\rm int}(t) = \lambda \delta(t) \otimes \hat{\varphi}_f(t, \mathbf{x})$

where $\hat{\mu}(t) = e^{i\Omega t} |e\rangle\langle g| + e^{-i\Omega t} |g\rangle\langle e|$ is the monopole operator of the detector and

$$\hat{\varphi}_f(t, \mathbf{x}) = \int \frac{d^3 \mathbf{k}}{\sqrt{(2\pi)^3 2\omega(\mathbf{k})}} \left(F(\mathbf{k}) \hat{a}_{\mathbf{k}} e^{i(\mathbf{k} \cdot \mathbf{x} - \omega(\mathbf{k})t)} + \text{H.c.} \right)$$

vival patterns with respect to the particle's radius. Extending previous perturbative results we demonstrate that even in the case of a strong coupling between detector and field, massive fields are better at shielding the detector against the decohering effects of a thermal environment. In both cases we show how it is is possible to probe the value of the field's mass by either measuring its cohering or decohering power.

1. Cohering and Decohering power

For any valid measure C of quantum coherence the *cohering* and *decohering* power of a completely positive and trace preserving operation Φ is equal to

 $\mathcal{C}(\Phi) = \max_{|i\rangle} C(\Phi(|i\rangle\langle i|))$

and

 $\mathcal{D}(\Phi) = \max[C(\psi_d(\theta)) - C(\Phi(\psi_d(\theta)))]$

with $\omega(\mathbf{k}) = \sqrt{|\mathbf{k}|^2 + m^2}$ is a *smeared* massive scalar field of mass m. In this case one can drop the time-ordering operator and write the unitary evolution of the combined system as

 $\hat{U} = \exp[-i\lambda\hat{\mu}_0\otimes\hat{\varphi}_{f_0}].$

Evolving the system and tracing away the field degrees of freedom induces a quantum channel on the detector

 $\Phi(\rho) = (1 - |z|)B(\rho) + |z|V\rho V^{\dagger}$

which is a convex combination of a bit-flip channel $B(\rho) = \frac{1}{2}(\rho + \hat{\mu}_0 \rho \hat{\mu}_0)$ and a unitary rotation V of the form

$$V = \sqrt{\frac{|z| + \operatorname{Re} z}{2|z|}} \hat{I} - i \sqrt{\frac{|z| - \operatorname{Re} z}{2|z|}} \hat{\mu}_0,$$

with $z = \operatorname{tr}_{\varphi}[e^{i2\lambda\hat{\varphi}_{f_0}}\sigma_{\varphi}].$

3. Coherence revival patterns

The ℓ_1 -cohering power of a scalar field in a coherent state $|a\rangle$ (such that $\hat{a}_k |a\rangle = a(k) |a\rangle$) with a cohering amplitude distribution and smearing function of the form

 $oldsymbol{ heta}$

respectively. The maximum is taken over the set of incoherent bases in the first case and over the set of *maximally coherent states*

in the second.

4. Decoh. power of thermal fields

The ℓ_1 decohering power of a thermal field $\sigma_{\phi} \approx e^{-\beta \hat{H}_{\phi}}$ is equal to

$$\mathcal{D}_{\ell_1}(\Phi) = 1 - e^{-\lambda^2 I(\beta)}$$

with $I(\beta) = \frac{1}{2\pi} \int_0^\infty \frac{k^2 e^{-\frac{\pi k^2 R^2}{8}}}{\sqrt{k^2 + m^2}} \coth\left(\frac{\beta \sqrt{k^2 + m^2}}{2}\right) dk.$

$$a(\mathbf{k}) = \sqrt{\frac{|\mathbf{k}|}{\omega(\mathbf{k})}} \frac{\exp\left(-\frac{2|\mathbf{k}|^2}{\pi E^2}\right)}{(\pi E/2)^{3/2}}, \quad F(\mathbf{k}) = \exp\left[-\frac{\pi |\mathbf{k}|^2 R^2}{16}\right]$$

given as a function of the mean energy E of the field and the mean radius R of the detector respectively, is equal to

 $\mathcal{C}_{\ell_1}(\Phi) = e^{-2\lambda^2 [\hat{\mathbf{a}}, \hat{\mathbf{a}}^\dagger]} |\sin(4\lambda \operatorname{Re}\langle \hat{\mathbf{a}} \rangle_a)|$

where $[\hat{a}, \hat{a}^{\dagger}] = \frac{m^2}{16\pi^{3/2}} U\left(\frac{3}{2}, 2, \frac{\pi m^2 R^2}{8}\right)$ and $\operatorname{Re}\langle \hat{a} \rangle_a = m\sqrt{\frac{2m^3}{\pi^4 E^3}} \Gamma\left(\frac{7}{4}\right) U\left(\frac{7}{4}, \frac{9}{4}, \frac{m^2}{2\sigma^2}\right)$, with U(a, b, z) denoting Tricomi's confluent hypergeometric function.

 λ/R

When $\lambda E \lesssim 3.44$ no revival patterns can occur. For a detector with an effective radius R = 1/E, when $\lambda E \lesssim 2.4$ the cohering power is in a one-to-one relation with respect to the mass of the field.