
Cohering and decohering power of
massive scalar fields under instantaneous
interactions (Phys. Rev. A 107, 022420)

Nikolaos K. Kollas1, Dimitris Moustos1 and Miguel R. Muñoz2
1 Laboratory on Relativistic Quantum Information and Foundations, Division of Theoretical and Mathematical Physics,
Astronomy and Astrophysics, Department of Physics, University of Patras, 26504, Patras, Greece
2 Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH,United Kingdom

Abstract
We employ a non-perturbative technique to in-
vestigate the ability of a quantum field to cre-
ate or destroy coherence in a two level Unruh-
DeWitt (UDW) detector. We observe that,
above a critical value of the effective cou-
pling constant, the maximum amount of coher-
ence generated by a coherent field displays re-
vival patterns with respect to the particle’s ra-
dius. Extending previous perturbative results
we demonstrate that even in the case of a strong
coupling between detector and field, massive
fields are better at shielding the detector against
the decohering effects of a thermal environment.
In both cases we show how it is is possible to
probe the value of the field’s mass by either mea-
suring its cohering or decohering power.

1. Cohering and Decohering power
For any valid measure C of quantum coherence
the cohering and decohering power of a com-
pletely positive and trace preserving operation
Φ is equal to

C(Φ) = max
|i⟩

C(Φ(|i⟩⟨i|))

and

D(Φ) = max
θ

[C(ψd(θ)) − C(Φ(ψd(θ)))]

respectively. The maximum is taken over the set
of incoherent bases in the first case and over the
set of maximally coherent states

ψd(θ) = 1√
d

d−1∑
j=0

eiθj |j⟩

in the second.

2. Instantaneous interactions of UDW detectors with scalar fields
The interaction Hamiltonian is given by

Ĥint(t) = λδ(t) ⊗ φ̂f (t,x)

where µ̂(t) = eiΩt |e⟩⟨g| + e−iΩt |g⟩⟨e| is the monopole operator of the detector and

φ̂f (t,x) =
∫

d3k√
(2π)32ω(k)

(
F (k)âke

i(k·x−ω(k)t) + H.c.
)

with ω(k) =
√

|k|2 +m2 is a smeared massive scalar field of mass m. In this case one can drop the
time-ordering operator and write the unitary evolution of the combined system as

Û = exp[−iλµ̂0 ⊗ φ̂f0 ].

Evolving the system and tracing away the field degrees of freedom induces a quantum channel on
the detector

Φ(ρ) = (1 − |z|)B(ρ) + |z|V ρV †

which is a convex combination of a bit-flip channel B(ρ) = 1
2 (ρ + µ̂0ρµ̂0) and a unitary rotation V

of the form

V =

√
|z| + Re z

2|z|
Î − i

√
|z| − Re z

2|z|
µ̂0,

with z = trφ[ei2λφ̂f0σφ].

3. Coherence revival patterns
The ℓ1-cohering power of a scalar field in a coherent state |a⟩ (such that âk |a⟩ = a(k) |a⟩) with a
cohering amplitude distribution and smearing function of the form

a(k) =

√
|k|
ω(k)

exp
(

− 2|k|2

πE2

)
(πE/2)3/2 , F (k) = exp

[
−π|k|2R2

16

]

given as a function of the mean energy E of the field and the mean radius R of the detector respec-
tively, is equal to

Cℓ1(Φ) = e−2λ2[â,â†]|sin(4λRe⟨â⟩a)|

where [â, â†] = m2

16π3/2U
(

3
2 , 2,

πm2R2

8

)
and Re⟨â⟩a = m

√
2m3

π4E3 Γ
( 7

4
)
U

(
7
4 ,

9
4 ,

m2

2σ2

)
, with U(a, b, z)

denoting Tricomi’s confluent hypergeometric function.

When λE ≲ 3.44 no revival patterns can oc-
cur. For a detector with an effective radius
R = 1/E, when λE ≲ 2.4 the cohering power
is in a one-to-one relation with respect to the
mass of the field.

4. Decoh. power of thermal fields
The ℓ1 decohering power of a thermal field
σϕ ≈ e−βĤϕ is equal to

Dℓ1(Φ) = 1 − e−λ2I(β)

with I(β) = 1
2π

∫ ∞
0

k2e− πk2R2
8√

k2+m2 coth
(

β
√

k2+m2

2

)
dk.
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